"Nick The Camel" and beyond... Bauck's polyatomic ion summary

number of consonants = number of oxygen atoms in the ion number of vowels = negative charge of the ion Nick the **C**amel **ATE Cl**am for Phoenix... a **S**upper in carbonate chlorate sulfate nitrate phosphate $(NO_3)^{-1}$ $(CO_3)^{-2}$ $(CIO_3)^{-1}$ $(SO_4)^{-2}$ $(PO_4)^{-3}$ "-ATE ions ATE more." -ITE ions have one less oxygen than the -ATE form. chlor<u>ite</u> sulfite nitrite carbonite phosphite $(CO_2)^{-2}$ $(CIO_2)^{-1}$ $(SO_3)^{-2}$ $(PO_3)^{-3}$ $(NO_2)^{-1}$ "hypo" = 1 less 0 "per" = 1 more 0 hypochlorite perchlorate permanganate (CIO)-1 $(CIO_4)^{-1}$ $(MnO_4)^{-1}$ H has a +1 charge, so the charge of the original ion is reduced by 1. hydrogen carbonate (bicarbonate) hydrogen sulfate (bisulfate) $(HCO_3)^{-1}$ $(HSO_4)^{-1}$ Br is next to Cl (see chlorate) As is next to P (see phosphate) bromate arsenate $(BrO_3)^{-1}$ $(AsO_4)^{-3}$

 $MORE \rightarrow$

... and Nick ate Crabgrass for dessert.

<u>di</u>chromate = two Cr. Use the same consonant and vowel rules for Nick The Camel.

dichromate $(Cr_2O_7)^{-2}$

chromate (CrO₄)⁻² (similar setup to sulfate)

OTHER IONS...

Ammonium is the only positive polyatomic ion on the list given at the beginning of the school year. It has a similar

formula to ammonia, which is NH_3 . ammonium $(NH_4)^{+1}$

"Hydroxide is the one" hydroxide (OH) $^{-1}$

"Cya \underline{N} ide is the dangerous \underline{one} " cyanide (CN) $^{-1}$

<u>ox</u>alate... ox makes me think of a cow. "<u>CO</u>w goes moo, 2-4-2." oxalate $(C_2O_4)^{-2}$

Acetate has two arrangements, both with the same charge:

"CHO 2-3-2" acetate $(C_2H_3O_2)^{-1}$

"C-H-3 Cooooooo" acetate (CH₃COO)⁻¹

Silicate has two formulas: $(SiO_3)^{-2}$, which is used more in the Chem 1H book, and $(SiO_4)^{-1}$, which is used more in AP Chemistry.

Two ions on our list begin with THIO- (indicating S is present) and end in -ATE:

There are similarities to cyanide and sulfate. thiocyanate $(SCN)^{-1}$ thiosulfate $(S_2O_3)^{-2}$